

Sommaire

Matières plastiques

Résitance des volants

Résistance des poignées étriers

Insert métalliques

Nuances d'inox utilisées

Normalisation des rainures de clavetage DIN 6885

Normalisation des carrés DIN 79

Normalisation des filetages métriques DIN 13

Ecarts admis par le système ISO

Tolérances de base - DIN 7151

Correspondances des principales normes d'aciers

Table comparative des duretés

Classification des degrés de protection IP

Grandeurs et unités de mesures

Matières plastiques

- Définitions

Les Duroplast : matières plastiques thermodurcissables à base phénolique qui durcissent pendant le moulage à la suite d'une polymérisation irréversible.

Les Technopolymères : matières polymériques thermoplastiques ayant de grandes propriétés mécaniques, thermiques et technologiques.

Exemples de technopolymères : polyamide, polypropylène, résine acétalique, polycarbonate, polyester, élastomère thermoplastique.

- Résistance mécanique

Les Duroplast : une excellente résistance mécanique et une bonne résistance aux chocs grâce à l'utilisation de charges minérales, de fibres textiles naturelles et le choix d'une résine de base optimale.

Les Technopolymères : une bonne résistance mécanique et aux chocs grâce à une vaste gamme de polymères de base et la possibilité de les combiner avec des charges de renfort ou des additifs.

- Résistance thermique

Les matières plastiques à haute résistance thermique permettent d'atteindre une stabilité thermique élevée ainsi que de limiter la variation des propriétés mécaniques, aussi bien à haute qu'à basse température.

Températures maximum d'emploi :

- . Duroplast: -20°C à +100°/110°C.
- . Technopolymères base polypropylène haute résilience : 0°C à +80°/90°C.
- . Technopolymères base polypropylène renforcé de fibres de verre : 0°C à +100°C.
- . Technopolymères base polyamide : -20°C à +90°C.
- . Technopolymères base polyamide renforcé de fibres de verre : -30°C à +130°/150°C.
- . Technopolymères base polyamide hautes températures: -30°C à +200°C.
- Résistance et dureté superficielle

Les Duroplast : la matière et la finition brillante permettent de conserver la surface intacte, même après une utilisation prolongée en présence de copeaux métalliques ou de grains abrasifs.

Les Technopolymères : la dureté est inférieure à celle des duroplast mais ils ont une meilleure ténacité et une plus grande résistance aux chocs.

- Résistance aux agents chimiques

Certaines matières plastiques ne s'altèrent pas au contact des agents chimiques tels les acides, solvants, huiles, essences, etc...

- Comportement au feu

Classification UL-94 HB: le test consiste à mettre 3 éprouvettes de matière plastique en position horizontale et à 45° par rapport à leur axe, au contact d'une flamme pendant 30 secondes.

Classification UL-94 V : le test consiste à mettre 5 éprouvettes de matière plastique en position verticale,

au contact d'une flamme deux fois chacune pendant 10 secondes. On place du coton hydrophile sous les éprouvettes.

Pour les produits classé UL-94 VO, on rélève les paramètres suivants :

Temps nécessaire pour que chaque échantillon s'éteigne après chaque application de flamme : < 10 s. Somme des temps nécessaires pour que les 5 éprouvettes s'éteignent : < 50 s.

Temps de post-incandescence de chaque éprouvette après la 2 ème application de flamme : < 30 s. Pas de présence de gouttes de matière provenant de l'éprouvette et pouvant enflammer le coton hydrophile placé sous celle-ci.

- Propriétés électriques

Les matières plastiques sont de bons isolants électriques, ce qui permet leur utilisation dans des domaines électromagnétiques.

Caractéristiques mécaniques

Pour les différentes matières plastiques que nous employons, nous avons évité délibérément de fournir des tableaux avec données spécifiques de résistance mécanique obtenues sur éprouvettes. En effet, les propriétés mécaniques d'un élément en matière plastique peuvent être très différentes selon sa forme et sont influencées par le moulage. Par contre, nous avons estimé utile et important pour l'utilisateur de nos éléments de connaître pour chaque modèle (dans les cas les plus importants) les valeurs globales des efforts qui peuvent causer la rupture. Et cela, soit à cause d'efforts de rupture fonctionnels (transmission d'un couple, dans le cas d'un volant), soit à cause d'efforts de rupture accidentels (choc d'une masse, d'un outil, etc...).

Ces valeurs sont le résultat de tests effectués en laboratoire avec une température et une humidité contrôlées (23°C - 50% d'Humidité Relative), dans des conditions d'utilisation déterminées et avec l'application d'une charge statique pendant un temps limité. Par conséquent, le concepteur devra toujours prévoir un coefficient de sécurité adapté en fonction de l'application et des conseils d'utilisation.

Pour certaines matières thermoplastiques dont les caractéristiques varient sensiblement en fonction des pourcentages d'absorption de l'humidité, les essais de résistance sont effectués sur des pièces conditionnées suivant les normes ASTM D.570, de façon à ce que l'absorption de l'humidité corresponde à l'équilibre dans un milieu ambiant à 23°C et 50% U.R. (humidité relative).

Les essais de résistance à l'application d'un couple sont exécutés à l'aide d'un dispositif dynamométrique qui applique un couple croissant comme celui décrit dans le schéma fig. 1 (page 890). Les valeurs moyennes des couples (grandeur C) obtenues lors des tests de rupture, pour les différents modèles, sont reportées dans chaque tableau, et exprimées en N x m.

Les essais de résistance aux chocs sont réalisés à l'aide d'un dispositif spécial comme décrit dans le schéma fig. 2 (page 890). Les valeurs moyennes obtenues lors d'essais de rupture, pour les différents modèles, sont exprimées en Joule (J) et reportées dans chaque tableau. Elles correspondent au travail de rupture (grandeur L) de la pièce provoqué par les chocs répétés (en augmentant la hauteur de chute de 10 cm en 10 cm). Poids tombant: cylindre métallique de 0,680 kg.

250

1300

300

48

1500

■ Résistance des volants

Essais de résistance à l'application d'un couple C (Nm). Essais de résistance au choc L (J).

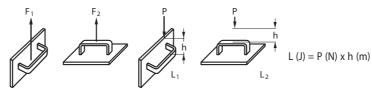
VOLANT R	Réf. 13-10)						
d (mm)	100	125	140	160	200	250	300	
L (J)	5	8	12	12	16	19	33	-
C (Nm)	67	120	165	165	300	405	800	-
VOLANT R	Réf. 13-11							
d (mm)	50	63	80	100	125	150	175	200
L (J)	3	4	8	11	14	19	27	36
C (Nm)	55	75	90	150	300	300	500	700
VOLANT F	Réf. 13-13	3						
d (mm)	100	125	150	200	250			
L (J)	20	28	30	42	46			
C (Nm)	240	450	480	1060	1700			
VOLANT R	Réf. 13-15	5 / 13-17						
d (mm)	80	100	125	150	175	200	250	
L (J)	6	13	25	26	26	27	30	
C (Nm)	34	60	125	180	195	320	500	_
VOLANT R	Réf. 13-18	3 / 13-19						
d (mm)	80	100	125	160	200	250	300	
L (J)	5	7	10	15	24	28	36	
C (Nm)	32	54	94	185	300	420	480	

volant en essai Fig. 1 Schéma du dispositif pour l'essai d'application d'un couple (sollicitation étau de serrage fonctionnelle) dynamomètre dispositif de tension du dynamomètre Fig. 2 Schéma du dispositif poids tombant pour l'essai de résistance aux chocs répétés (sollicitation tube gradué accidentelle) volant en essai table porte-pièce Fig. 3

C[N.m] = F[N].b[m]

 $L[J] = P[N] \cdot h[m]$

■ Résistance des poignées étriers


Résistance à l'application d'une charge à traction (sollicitation fonctionnelle)

Pour donner une idée exacte des charges maxi. que les poignées ci-dessous sont à même de supporter lorsqu'elles sont utilisées pour soulever un poids, nous avons effectué des essais de rupture à l'aide d'un dispositif dynamométrique.

Nous avons effectué les essais en deux conditions différentes d'application de la charge d'après les schémas ci-dessous et les valeurs moyennes, exprimées en N, sont indiquées dans les tableaux aux lignes F₁ et F₂.

Résistance aux chocs (sollicitation accidentelle)

Nous avons effectué des essais de résistance aux chocs accidentels à l'aide du dispositif présenté à la page 890, dans les deux conditions ci-dessous. Poids tombant = 0,680 kg (cylindre métallique). Les valeurs moyennes obtenues, exprimées en Joule (J) sont indiquées dans les tableaux aux lignes L₁ et L₂. Elles correspondent au travail de rupture de la poignée provoqué par des chocs répétés (en augmentant la hauteur de chute du poids de 10 cm en 10 cm).

POIGNEE Réf. 11-540

I_1	86	117	179
L ₂ (J)	6	10	8
L ₁ (J)	5	6	7
F ₂ (N)	2500	5000	2000
F ₁ (N)	2500	4000	3000

POIGNEE Réf. 11-545

Ī	I ₁	86	117	130	150	179	300
Ī	L ₂ (J)	6	12	12	13	13	11
	L ₁ (J)	12	8	8	8	11	18
Ī	F ₂ (N)	2400	2650	2450	2550	2000	2000
	F ₁ (N)	2400	2250	2200	2000	1900	2000

POIGNEE Réf. 11-560

I ₁	93,5	117	132	149	179	235
L ₂ (J)	8	13	14	15	17	22
L ₁ (J)	15	20	27	27	28	30
F ₂ (N)	2500	2500	2500	2600	2700	3500
F ₁ (N)	3500	4500	3500	3000	2800	3200

POIGNEE Réf. 11-565

I ₁	93,5	117	132	179
L ₂ (J)	5	8	8	13
L ₁ (J)	9	10	12	20
F ₂ (N)	1700	2200	1800	2100
F ₁ (N)	1750	3500	3000	1400

POIGNEE Réf. 11-64

l ₁	93,5	117	150	179
L ₂ (J)	3	4	5	9
L ₁ (J)	8	10	12	16
F ₂ (N)	1500	1800	1500	1500
F ₁ (N)	2000	2700	2700	2200

POIGNEE Réf. 11-65

I ₁	94	117	132
L ₂ (J)	4	8	8
L ₁ (J)	8	12	10
F ₂ (N)	2000	2000	1700
F ₁ (N)	2500	3500	3000

Inserts métalliques

Il est apporté un soin tout particulier à la forme des parties métalliques afin d'obtenir leur meilleur ancrage dans la matière plastique et la meilleure fonctionnalité mécanique de l'élément.

Pour l'ancrage des différentes parties métalliques (des douilles les plus petites aux moyeux les plus gros), nous avons adopté la solution du moletage croisé de forme, pas et profondeur proportionnés aux efforts à transmettre. Par ce type de moletage est assuré aussi bien l'ancrage axial (traction axiale) que l'ancrage radial (transmission d'un couple).

L'ancrage de la partie métallique au moyen d'un moletage croisé rationnel répartit uniformément l'effort à transmettre sur un nombre très élevé de points qui atteignent de modestes valeurs locales d'effort et ne compromettent pas la résistance de la matière.

Dans le cas de tiges, au lieu d'incorporer un simple boulon, nous employons une partie usinée dans le but de réaliser un appui métallique pour le vissage. Cet appui métallique supporte les efforts de serrage et libère le corps en matière plastique de toute contrainte.

Quand il s'agit de volants dans lesquels on doit pratiquer des trous débouchants, la partie métallique est prévue de façon que l'usinage du trou ou le brochage d'une rainure de clavette n'intéresse que la partie métallique sans entraîner aucun usinage de la partie plastique.

Les matériaux employés pour les parties métalliques sont :

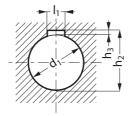
- A : acier pour l'usinage mécanique à haute vitesse suivant UNI 5105.
- B: laiton type OT 58 UNI 5705.
- C: acier inoxydable.
- D : alliage de zinc moulé sous pression laitonné type G-Zn A1 Cu 1 suivant UNI 3717.

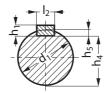
Protection des inserts métalliques :

- brunissage,
- chromage mat,
- zingage brillant.

■ Nuances d'inox utilisées

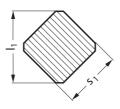
Nombreuses sont les applications où l'on demande des éléments destinés à opérer dans des conditions spéciales dues à la présence de divers facteurs (d'hygiène, de climat, de milieu...) et répondant à des dispositions qui les rendent obligatoires (industrie pharmaceutique, alimentaire, appareils médicaux...).

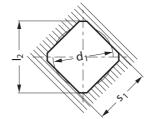

Les caractéristiques des produits en acier inox sont la résistance à la corrosion et donc l'élimination des dommages qui en dérivent.


lnox employés pour nos produits :

FRANCE	USA		ALLEMAGNE					Compos	ition chimiqu	e		
Afnor	Aisi	Werkstoff	Din	% C	% Mn	% P	% S	% Si	% Ni	% Cr	% Mo	Autres
Z 10 CN 18-09	302	1.4300	X 12 Cr Ni 18-09	0,12	2,00	0,04	0,03	1,00	6 à 8	16 à 18	-	-
Z 8 CNF 18-09	303	1.4305	X 12 Cr Ni 18-08	≤ 0,12	2,00	0,06	≥ 0,15	1,00	8 à 10	17 à 19	≤ 0,6	-
Z 6 CN 18-09	304	1.4301	X 5 Cr Ni 18-09	0,07	2,00	0,04	0,03	1,00	8 à 10	17 à 19	-	-
Z 2 CN 18-10	304 L	1.4306	X 2 Cr Ni 18-09	0,03	2,00	0,04	0,03	1,00	9 à 11	17 à 19	-	-
Z 8 CN 18-12	305	1.4303	X 5 Cr Ni 19-11	0,10	2,00	0,04	0,03	1,00	11 à 13	17 à 19	-	-
Z 12 CNS 25-13	309	1.4833	X 7 Cr Ni 23-14	0,20	2,00	0,04	0,03	1,00	11 à 14	22 à 25	-	-
Z 12 CNS 25-20	310	1.4945	X 12 Cr Ni Si 25-20	0,15	2,00	0,04	0,03	1,00	18 à 21	23 à 26	-	-
Z 6 CND 17-11	316	1.4401	X 5 Cr Ni Mo 18-10	0,07	2,00	0,04	0,03	1,00	10 à 12,5	16 à 18	2 à 2,5	-
Z 2 CND 17-12	316 L	1.4404	X 2 Cr Ni Mo 18-10	0,03	2,00	0,04	0,03	1,00	10,5 à 13	16 à 18	2 à 2,5	-
Z 6 CNDT 17-12	316 Ti	1.4571	X 10 Cr Ni Mo Ti 18-10	0,10	2,00	0,04	0,03	1,00	10,5 à 13	16 à 18	2 à 2,5	Ti \geq 5 C; Ti \leq 0,6
Z 6 CNT 18-10	321	1.4541	X 10 Cr Ni Ti 18-09	0,12	2,00	0,04	0,03	1,00	10 à 12	17 à 19	-	$Ti \ge 5 C$; $Ti \le 0.6$
Z 6 C 13	403	1.4000	X 7 Cr 13	0,08	1,00	0,04	0,03	1,00	-	11,5/13,5	-	-
Z 12 C 13	410	1.4006	X 10 Cr 13	0,08/0,15	1,00	0,04	0,03	1,00	-	11,5/13,5	-	-
Z 12 CF 13	416	1.4005	X 12 Cr S 13	0,08/0,15	1,50	0,06	≥ 0,15	1,00	≤ 0,5	12 à 14	0,15/0,6	-
Z 30 C 13	420 B	1.4028	X 30 Cr 13	0,30	1,00	0,04	0,03	1,00	-	12 à 14	-	-
Z 15 CN 16-02	431	1.4057	X 22 Cr Ni 17	0,1/0,2	1,00	0,04	0,03	1,00	1,5/3	15/17	-	-
Z 100 CD 17	440 C	1.4125	X 105 Cr Mo 17	1,00	1,00					17,00	-	-
Z 8 C 17	430	1.4016	X 48 Cr 17	0,08	1,00	0,04	0,03	1,00	≤ 0,5	16/18	-	-
Z 10 CF 17	430 F	1.4104	X 12 Cr Mo S 17	0,12	1,50	0,06	≥ 0,15	1,00	≤ 0,5	16/18	0,2/0,6	-

■ Normalisation des rainures de clavetage DIN 6885



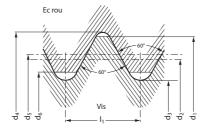

d_1	I ₁ P9 Moyeu	l ₂ p9 Arbre	h ₁	$= d_1 + h_3$	h ₃	$h_4 = d_1 - h_5$	h ₅
7	2	2	2	8	1 + 0,1	5,8	1,2 + 0,1
8	2	2	2	9	1	6,8	1,2
9	3	3	3	10,4	1,4	7,2	1,8
10	3	3	3	11,4	1,4	8,2	1,8
11	4	4	4	12,8	1,8	8,5	2,5
12	4	4	4	13,8	1,8	9,5	2,5
13	5	5	5	15,3	2,3	10	3
14	5	5	5	16,3	2,3	11	3
15	5	5	5	17,3	2,3	12	3
16	5	5	5	18,3	2,3	13	3
17	5	5	5	19,3	2,3	14	3
18	6	6	6	20,8	2,8	14,5	3,5
20	6	6	6	22,8	2,8	16,5	3,5
22	6	6	6	24,8	2,8	18,5	3,5

d ₁	I ₁ P9 Moyeu	l ₂ p9 Arbre	h ₁	$\begin{array}{c} h_2 \\ = d_1 + h_3 \end{array}$	h ₃	$h_4 = d_1 - h_5$	h ₅
24	8	8	7	27,3	3,3 + 0,2	20	4 + 0,2
25	8	8	7	28,3	3,3	21	4
26	8	8	7	29,3	3,3	22	4
28	8	8	7	31,3	3,3	24	4
30	8	8	7	33,3	3,3	26	4
32	10	10	8	35,3	3,3	27	5
34	10	10	8	37,3	3,3	29	5
35	10	10	8	38,3	3,3	30	5
36	10	10	8	39,3	3,3	31	5
38	10	10	8	41,3	3,3	33	5
40	12	12	8	43,3	3,3	35	5
42	12	12	8	45,3	3,3	37	5
44	12	12	8	47,3	3,3	39	5

■ Normalisation des carrés DIN 79

s ₁ H ₁₁ / h ₁₁	d ₁ max	I ₁ max.	I ₁ min.	l ₂ min.
4	4,2	5	4,7	5,3
5	5,3	6,5	5,9	6,6
5,5	5,8	7	6,5	7,2
6	6,3	8	7,1	8,1
7	7,3	9	8,3	9,1
8	8,4	10	9,5	10,1
9	9,5	12	10,7	12,1
10	10,5	13	11,9	13,1
11	11,6	14	13,1	14,1
12	12,6	16	14,3	16,1
13	13,7	17	15,5	17,1
14	14,7	18	16,7	18,1
16	16,8	21	19,1	21,2

s ₁ H ₁₁ / h ₁₁	d ₁ max	I ₁ max.	I ₁ min.	l ₂ min.
17	17,9	22	20,3	22,2
19	20	25	22,7	25,2
22	23,1	28	26,3	28,2
24	25,3	32	28,7	32,2
27	28,4	36	32,2	36,2
30	31,7	40	35,8	40,2
32	33,7	42	38,2	42,2
36	38	48	43,1	48,2
41	43,2	54	49,1	54,2
46	48,5	60	55	60,2
50	52,7	65	59,8	65,2
55	57,9	72	65,8	72,2


■ Normalisation des filetages métriques DIN 13

Les dimensions limites indiquées dans le tableau correspondent :

- à la classe de tolérance 6g pour les filets des vis,
- à la classe de tolérance 6H pour les filets des écrous.

Les filetages métriques donnés dans ce catalogue sont fabriqués d'après ces tolérances.

Les filetages des pièces normalisées en matière plastique peuvent s'écarter de ces tolérances pour des raisons techniques de fabrication.

				VIS	6g			ECROU 6H						
ø		ø extér	ieur d ₁	ø prim	itif d ₂	ø fond de	e filet d 3	ø extérieur d 4	ø prim	nitif d 5	ø fond de	e filet d 6		
filetage	I ₁	max	min	max	min	max	min	min	min	max	min	max		
M 3	0,5	2,980	2,874	2,655	2,580	2,367	2,273	3,000	2,675	2,775	2,459	2,599		
M 4	0,7	3,978	3,838	3,523	3,433	3,119	3,002	4,000	3,545	3,663	3,242	3,422		
M 5	0,8	4,976	4,826	4,456	4,361	3,995	3,869	5,000	4,480	4,605	4,134	4,334		
M 6	1	5,974	5,794	5,324	5,212	4,747	4,596	6,000	5,350	5,500	4,917	5,153		
M 8	1,25	7,972	7,760	7,160	7,042	6,438	6,272	8,000	7,188	7,348	6,647	6,912		
M 10	1,5	9,968	9,732	8,994	8,862	8,128	7,938	10,000	9,026	9,206	8,376	8,676		
M 12	1,75	11,966	11,701	10,829	10,679	9,819	9,602	12,000	10,863	11,063	10,106	10,441		
M 14	2	13,962	13,682	12,663	12,503	11,508	11,271	14,000	12,701	12,913	11,835	12,210		
M 16	2	15,962	15,682	14,663	14,503	13,508	13,271	16,000	14,701	14,913	13,835	14,210		
M 20	2,5	19,958	19,623	18,334	18,164	16,891	16,625	20,000	18,376	18,600	17,294	17,744		
M 24	3	23,952	23,577	22,003	21,803	20,271	19,955	24,000	22,051	22,316	20,752	21,252		

■ Ecarts admis par le système ISO

DIN 7160 : ARBRES

DIN 7161 : ALÉSAGES

Écarts en microns (1 micron = 0,001 mm)

Gamme des cotes nominales en mm	E 8	F 7	G 7	H 5	H 6	H 7	H 8
De 1 à 3	+ 28 + 14	+ 16 + 6	+ 12 + 2	+ 4	+ 6	+ 10 0	+ 14
De 3 à 6	+ 38 + 20	+ 22 + 10	+ 16 + 4	+ 5 0	+ 8	+ 12 0	+ 18 0
De 6 à 10	+ 47 + 25	+ 28 + 13	+ 20 + 5	+ 6	+ 9	+ 15 0	+ 22 0
De 10 à 18	+ 59 + 32	+ 34 + 16	+ 24 + 6	+ 8	+ 11 0	+ 18 0	+ 27 0
De 18 à 30	+ 73 + 40	+ 41 + 20	+ 28 + 7	+ 9	+ 13 0	+ 21 0	+ 33
De 30 à 50	+ 89 + 50	+ 50 + 25	+ 34 + 9	+ 11	+ 16 0	+ 25 0	+ 39
De 50 à 80	+ 106 + 60	+ 60 + 30	+ 40 + 10	+ 13 0	+ 19 0	+ 30	+ 46 0
De 80 à 120	+ 126 + 72	+ 71 + 36	+ 47 + 12	+ 15 0	+ 22 0	+ 35 0	+ 54 0
De 120 à 180	+ 148 + 85	+ 83 + 43	+ 54 + 14	+ 18 0	+ 25 0	+ 40 0	+ 63 0

Gamme des cotes nominales en mm	d 9	e 8	f6	f 7	g 6	h 3	h 4	h 5	h 6	h 8	h 9	j 6	js 6	js 9	js 14	k 6	m 5	m 6	n 6
De 1 à 3	- 20 - 45		- 6 - 12	- 6 - 16	- 2 - 8	0 - 2	0 - 3	0 - 4	0 - 6	0 - 14	0 - 25	+ 4 - 2	+ 3 - 3	+ 12,5 - 12,5		+ 6	+ 6 + 2	+ 8 + 2	+ 10 + 4
De 3 à 6	- 30 - 60		- 10 - 18	- 10 - 22	- 4 - 12	0 - 2,5	0 - 4	0 - 5	0 - 8	0 - 18	0 - 30	+ 6 - 2	+ 4 - 4	+ 15 - 15	+ 150 - 150	+ 9 + 1	+ 9 + 4	+ 12 + 4	+ 16 + 8
De 6 à 10	- 40 - 76		- 13 - 22	- 13 - 28	- 5 - 14	0 - 2,5	0 - 4	0 - 6	0 - 9	0 - 22	0 - 36		+ 4,5 - 4,5	+ 18 - 18	+ 180 - 180	+ 10 + 1	+ 12 + 6	+ 15 + 6	+ 19 + 10
De 10 à 18	- 50 - 93	- 32 - 59	- 16 - 27	- 16 - 34	- 6 - 17	0 - 3	0 - 5	0 - 8	0 - 11	0 - 27	0 - 43			+ 21,5 - 21,5	+ 215 - 215	+ 12 + 1	+ 15 + 7	+ 28 + 7	+ 23 + 12
De 18 à 30	- 65 - 117		- 20 - 33	- 20 - 41	- 7 - 20	0 - 4	0 - 6	0 - 9	0 - 13	0 - 33	0 - 52		+ 6,5 - 6,5		+ 260 - 260	+ 15 + 2	+ 17 + 8	+ 21 + 8	+ 28 + 15
De 30 à 50	- 80 - 142	- 50 - 89	- 25 - 41	- 25 - 50	- 9 - 25	0 - 4	0 - 7	0 - 11	0 - 16	0 - 39	0 - 62	+ 11 - 5	+ 8 - 8		+ 310 - 310	+ 18 + 2	+ 20 + 9	+ 25 + 9	+ 33 + 17
De 50 à 80	- 100 - 174	- 60 - 106	- 30 - 49	- 30 - 60	- 10 - 29	0 - 5	0 - 8	0 - 13	0 - 19	0 - 46	0 - 74	+ 12 - 7	/-	+ 37 - 37	+ 370 - 370	+ 21 + 2	+ 24 + 11	+ 30 + 11	+ 30 + 20
De 80 à 120	- 120 - 207	- 72 - 126	- 36 - 58	- 36 - 71	- 12 - 34	0 - 6	0 - 10	0 - 15	0 - 22	0 - 54	0 - 87		+ 11 - 11		+ 435 - 435	+ 25 + 3	+ 28 + 13	+ 35 + 13	+ 45 + 23
De 120 à 180		- 85 - 148	- 43 - 68	- 43 - 83	- 14 - 39	0 - 8	0 - 12	0 - 18	0 - 25	0 - 63	0 - 100		+ 12,5 - 12,5		+ 500 - 500	+ 28 + 3	+ 33 + 15	+ 40 + 15	+ 52 + 27

Tolérances de base - DIN 7151

Les tolérances de base ISO sont à utiliser comme tolérances pour les mesures telles que diamètres, longueurs, largeurs, etc...

Un nombre attribué à une gamme de tolérances ISO est la marque de la qualité. Un nombre plus grand indique une qualité plus grossière.

Pour la marque de l'état de la gamme de tolérance par rapport à la cote nominale, on ajoutera des lettres au nombre sélectionné dans la gamme de tolérances IT.

La gamme de tolérances H est la plus employée pour les perçages. Cela indique que la plus petite cote du perçage correspond à la cote nominale et que la plus grosse cote tolérée correspond à la cote nominale + tolérance d'après IT.

	Gammes des					(Gammes des	cotes nomin	nales en mm	1				
Qualité	tolérances de base	De 1 à 3	De 3 à 6	De 6 à 10	De 10 à 18	De 18 à 30	De 30 à 50	De 50 à 80	De 80 à 120	De 120 à 180	De 180 à 250	De 250 à 315	De 315 à 400	De 400 à 500
01	IT 01	0,3	0,4	0,4	0,5	0,6	0,6	0,8	1	1,2	2	2,5	3	4
0	IT 0	0,5	0,6	0,6	0,8	1	1	1,2	1,5	2	3	4	5	6
1	IT 1	0,8	1	1	1,2	1,5	1,5	2	2,5	3,5	4,5	6	7	8
2	IT 2	1,2	1,5	1,5	2	2,5	2,5	3	4	5	7	8	9	10
3	IT 3	2	2,5	2,5	3	4	4	5	6	8	10	12	13	15
4	IT 4	3	4	4	5	7	7	8	10	12	14	16	18	20
5	IT 5	4	5	6	8	9	11	13	15	18	20	23	25	27
6	IT 6	6	8	9	11	13	16	19	22	25	29	32	36	40
7	IT 7	10	12	15	18	21	25	30	35	40	46	52	57	63
8	IT 8	14	18	22	27	33	39	46	54	63	72	81	89	97
9	IT 9	25	30	36	43	52	62	74	87	100	115	130	140	155
10	IT 10	40	48	58	70	84	100	120	140	160	185	210	230	250
11	IT 11	60	75	90	110	130	160	190	220	250	290	320	360	400
12	IT 12	100	120	150	180	210	250	300	350	400	460	520	570	630
13	IT 13	140	180	220	270	330	390	460	540	630	720	810	890	970
14	IT 14	250	300	360	430	520	620	740	870	1000	1150	1300	1400	1550
15	IT 15	400	480	580	700	840	1000	1200	1400	1600	1850	2100	2300	2500
16	IT 16	600	750	900	1100	1300	1600	1900	2200	2500	2900	3200	3600	4000
17	IT 17	1000	1200	1500	1800	2100	2500	3000	3500	4000	4600	5200	5700	6300
18	IT 18	1400	1800	2200	2700	3300	3900	4600	5400	6300	7200	8100	8900	9700

■ Correspondance des principales normes d'aciers (à titre indicatif)

Aciers pour décolletage

NF	UNI	DIN	W.Nr	EURONORM	AISI-SAE
A37Pb	-	-	-	-	-
A60Pb	-	-	-	-	-
S250	CF9SMn28	9SMn28	-	11SMn28	-
S250Pb	CF9SMnPb28	9SMnPb28	-	11SMnPb28	-
S300	-	9SMn36	-	-	-
S300Pb	CF9SMnPb36	9SMnPb36	0737	9SMnPb35	12L14
18MF5	-	-	-	17520	1117
45MF4	CF44SMnPb28	45S20	-	45S20	1146

Aciers de cémentation

NF	UNI	DIN	W.Nr	EURONORM	AISI-SAE
XC10	C10	CK10	1121	2C10	1010
XC18	C15	CK15	1171	2C15	1017
-	-	15Cr3	7015	15Cr2	-
16MC5	16MnCr5	16MnCr5	7131	16MnCr5	-
20MC5	20MnCr5	20MnCr5	7141	-	-
18CD4	18CrMo4	16CrMo1	(7242)	18CrMo4	-
-	12NiCr3	-	-	-	-
14NC11	16NiCr11	(14NiCr10)	(5732)	13NiCr12	-
-	16CrNi4	-	-	-	-
-	20CrNi4	-	-	-	-
20NCD2	20NiCrMo2	21NiCrMo2	6523	20NiCrMo2	8620
-	18NiCrMo5	-	-	17NiCrMo5	-
-	18NiCrMo7	-	-	-	4320
-	16NiCrMo12	-	-	-	-

Aciers pour traitement thermique

NF	UNI	DIN	W.Nr	EURONORM	AISI-SAE
XC25	C25	CK22	-	2C25	1025
XC32	C30	-	-	-	1030
(XC38)	C35	CK35	1181	2C35	1038
(XC42)	C40	-	1186	-	1042
(XC48)	C45	CK45	1191	2C45	1045
(XC48)	C50	CK50	1206	-	1050
XC55	C55	CK55	1203	2C55	1055
XC65	C60	CK60	1221	2C60	1065
42C4	41Cr4	41Cr4	7035	41Cr4	5147
-	36CrMn5	-	-	-	-
25CD4	25CrMo4	25CrMo4	7218	25CrMo4	-
30CD4	30CrMo4	-	-	-	4130
35CD4	35CrMo4	34CrMo4	7220	34CrMo4	4135
42CD4	42CrMo4	42CrMo4	7225	42CrMo4	4142
40NCD2	40NiCrMo2	(42NiCrMo2-2)	(6546)	40NiCrMo2	8640
40NCD3	39NiCrMo3	-	-	39NiCrMo3	-
-	40NiCrMo7	(40NiCrMo7-3)	(6562)	-	4340
-	30NiCrMo12	-	-	-	-
-	30NiCrMoV12	-	-	-	-
35NCD16	34NiCrMo16	(30NiCrMo16-6)	(6747)	34NiCrMo16	-

Aciers pour trempe superficielle

NF	UNI	DIN	W.Nr	EURONORM	AISI-SAE
XC42TS	C43	-	-	-	-
XC48	C48	CK45	-	C46	1045
-	38Cr4	38Cr4	7043	38Cr4	-
-	36CrMn4	-	-	-	-
42CD4TS	41CrMo4	41CrMo4	7223	41CrMo4	(4140)
40NCD3TS	40NiCrMo3	-	-	40NiCrMo3	-

Aciers pour roulement

NF	UNI	DIN	W.Nr	EURONORM	AISI-SAE
100C6	100Cr6	100Cr6	3505	100Cr6	52100
-	100CrMn4	(100CrMn6)	(3520)	(100CrMn6)	-
100CD7	100CrMo7	W5	(3536)	(100CrMnMo7)	-

■ Table comparative des duretés

Dureté Brinell	Dureté F	Rockwell	Dureté Vickers	Résistance à la traction	Dureté Brinell	Dureté F	lockwell	Dureté – Vickers	Résistance à la traction	Dureté Brinell	Dulete nockwell		Dureté – Vickers	Résistance à la traction
HB/30	HRB	HRC	HV	Rm (N/mm ²)	HB/30	HRB	HRC	HV	Rm (N/mm ²)	HB/30	HRB	HRC	HV	Rm (N/mm ²)
100	55	-	105	335	209	95	-	220	705	371	-	39,8	390	1255
106	59	-	110	350	214	96	-	225	720	380	-	40,8	400	1290
110	62	-	115	365	223	97	-	235	755	390	-	41,8	410	1320
114	64	-	120	385	233	98	21,3	245	785	399	-	42,7	420	1350
119	67	-	125	400	238	99	22,2	250	800	409	-	43,6	430	1385
124	70	-	130	415	242	100	23,1	255	815	418	-	44,5	440	1420
128	71	-	135	430	247	-	24,0	260	835	428	-	45,3	450	1455
133	73	-	140	450	252	-	24,8	265	850	437	-	46,1	460	1485
138	75	-	145	465	257	-	25,6	270	865	447	-	46,9	470	1520
142	77	-	150	480	261	-	26,4	275	880	457	-	47,7	480	1555
147	79	-	155	495	266	-	27,1	280	900	466	-	48,4	490	1595
152	81	-	160	510	271	-	27,8	285	915	476	-	49,1	500	1630
157	82	-	165	525	276	-	28,5	290	930	486	-	49,8	510	1665
162	84	-	170	545	280	-	29,2	295	945	496	-	50,5	520	1700
166	85	-	175	560	285	-	29,8	300	965	506	-	51,1	530	1740
171	87	-	180	575	295	-	31,0	310	995	516	-	51,7	540	1775
176	88	-	185	590	304	-	32,2	320	1030	525	-	52,3	550	1810
181	89	-	190	610	314	-	33,3	330	1060	535	-	53,0	560	1845
185	90	-	195	625	323	-	34,4	340	1095	545	-	53,6	570	1880
190	91	-	200	640	333	-	35,5	350	1125	555	-	54,1	580	1920
195	92	-	205	655	342	-	36,6	360	1155	565	-	54,7	590	1955
200	93	-	210	675	352	-	37,7	370	1190	574	-	55,2	600	1995
204	94	-	215	690	361	-	38,8	380	1220					

■ Classification des degrés de protection IP

(suivant la norme internationale IEC 529)

Exemple: IP 43 (symbole IP associé à 2 chiffres)

Symbole IP

1er chiffre : protection contre la pénétration des corps solides étrangers

0	1	Ø 50 mm	2	Ø 12 mm	3	02.5 mm	4	0 1 mm	5	0	6	0
Aucune protection.	la pé de co de di supé	gé contre nétration orps solides mension rieure à m (mains).	la pér de co de dir supér	gé contre nétration rps solides mension ieure à m (doigts).	la pér de co de dir supér	gé contre nétration rps solides mension rieure à m (outils, s).	la pér de co de dir supér	gé contre nétration rps solides mension rieure à n (fils).	les dé de po endor	gé contre pôts nocifs ussière qui nmagent I fonction- nt.	protég	ement gé contre ussière.

2ème chiffre : protection contre la pénétration des liquides

0	1 0	2	3	4 9	5	6	7	8
Aucune protection.	Protégé contre la chute verticale de gouttes d'eau.	Protégé contre la chute de gouttes d'eau ayant une inclinaison maximum de 15° par rapport à la verticale.	Protégé contre la contre la pluie battante ayant une inclinaison maximum de 60° par rapport à la verticale.	Protégé contre les éclaboussures d'eau provenant de toutes les directions.	Protégé contre les jets d'eau provenant de toutes les directions.	Protégé contre les projections d'eau semblables aux vagues de la mer.	Protégé contre les effets de l'immersion dans l'eau dans des conditions déterminées de durée et de pression.	Protégé contre les effets de l'immersion continue dans l'eau dans des conditions déterminées de pression.

■ Grandeurs et unités de mesure

Multiples et sous-multiples

NF X 02-006		
Facteur	Préfixe	Symbole
10 ¹⁸	Exa	Е
10 ¹⁵	Peta	Р
10 ¹²	Téra	T
10 ⁹	Giga	G
10 ⁶	Méga	М
10 ³	Kilo	k
10 ²	Hecto	h
10 ¹	Déca	da
10 -1	Déci	d
10 - 2	Centi	С
10 - 3	Milli	m
10 - 6	Micro	μ
10 - 9	Nano	n
10 -12	Pico	р
10 -15	Femto	f
10 -18	Atto	a

Mécanique NF X 02-203

Masse volumique	Kilogramme par mètre cube	kg/m ³
Débit-masse	Kilogramme par seconde	kg/s
Débit-volume	Mètre cube par seconde	m ³ /s
Quantité de mouvement	Kilogramme mètre par seconde	kgm/s
Moment cinétique	Kllogramme mètre carré par seconde	kgm ² /s
Moment d'inertie	Kilogramme mètre carré	kg m ²
Force	Newton	N
Moment d'une force	Newton mètre	Nm
Pression, contrainte	Pascal	Pa
Viscosité dynamique	Pascal seconde	Pa.s
Viscosité cinématique	Mètre carré par seconde	m ² /s
Tension superficielle	Newton par mètre	N/m
Energie, travail, quantité de chaleur	Joule	J
Puissance, flux énergétique	Watt	W

Moment d'une force : 1 Nm = 0,102 mkgf 1 mkgf = 9,81 Nm Force : 1 N = 0,102 kgf 1 daN = 1,02 kgf 1 kgf = 9,81 N Puissance : 1 ch = 0,736 kW = 736 W 1 kW = 1000 W = 1,36 ch $\begin{aligned} & \text{Couple (Nm)} = \frac{\text{Puissance (kW)} \times 9550}{\text{Vitesse moteur (min} \quad ^{-1})} \\ & \text{Puissance (kW)} = \frac{\text{Couple (Nm)} \times \text{Vitesse moteur (min} \quad ^{-1})}{9550} \end{aligned}$

Espace et temps NF X 02-201

Aire, superficie	Mètre carré	m ²
Volume	Mètre cube	m ³
Vitesse angulaire	Radian par seconde	rad/s
Vitesse angulaire	Tour par minute	min⁻¹
Vitesse tangentièle	Mètre par seconde	m/s
Accélération	Mètre par seconde carré	m/s ²
Fréquence	Hertz	Hz
Fréquence de rotation	Seconde à la puissance moins un	s ⁻¹

Unités de base SI

Longueur	Mètre	m
Masse	Kilogramme	kg
Temps	Seconde	S
Intensité de courant électrique	Ampère	Α
Température thermodynamique	Kelvin	K
Quantité de matière	Mole	mol
Intensité lumineuse	Candéla	cd
Angle plan	Radian	rad
Angle solide	Stéradian	sr